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Variational formulation of inverse problems in imaging
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Linear forward model

y = Hs+ n

Problem: recover s from noisy measurements y

srec = arg min
s2RN

ky �Hsk22| {z }
data consistency

+ �kLskpp| {z }
regularization

, p = 1, 2

Regularization of ill-posed inverse problem

linear 
model

noise

H n

Sinogram = Radon transform of s 

s



The Radon transform and the FBP algorithm
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Reconstruction from y(t, ⇠) = R{s}(t, ⇠): the Filtered BackProjection algorithm

s = R⇤Krad{y}

Unit circle: S1 = {⇠ 2 R2 : k⇠k = 1} = {⇠ = (cos ✓, sin ✓), ✓ 2 [0, 2⇡)}

�

x1

x2

⇠
t

Krad: “radial” filtering in Radon space along the variable t 2 R.
Fourier symbol bKrad(!) / |!|

R⇤: backprojection operator (the adjoint of R)

pro
jec

tio
n

Radon transform of s 2 L1(R2)

R{s}(t, ⇠) =
Z

x2R2: ⇠Tx=t
s(x)dx

=

Z

R2

�(t� ⇠Tx)s(x)dx, (t, ⇠) 2 R⇥ S1

Supervised learning as a (linear) inverse problem
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but an infinite-dimensional one …

minf2H R(f) subject to
MX

m=1

|ym � f(xm)|2  �2

Introduce smoothness or regularization constraint

R(f) = kfk2
H

= kLfk2L2
=

Z

RN

|Lf(x)|2dx: regularization functional

(Poggio-Girosi 1990)

(Wahba 1990; Schölkopf 2001) 

) kernel estimator

Regularized least-squares fit (theory of RKHS)

fRKHS = argmin
f2H

 
MX

m=1

|ym � f(xm)|2 + �R(f)

!
with R(f) = kfk2

H

(p = 2)

Given the data points (xm, ym) 2 RN ⇥ R, find f : RN ! R s.t. f(xm) ⇡ ym for m = 1, . . . ,M



 

■Radon-domain regularization for neural nets
■ Admissible regularization operator
■ Unifying representer theorem
■ Laplacian revisited
■ Examples of admissible (operator, activation) pairs

OUTLINE
■ Connection with computational imaging ✔
■ Variational formulation of learning: State-of-the art
■ Classical RKHS and kernel methods
■ Optimality results for shallow ReLU neural networks

5

(surprize?)  ⇒  connection with fractional splines

Functions vs. distributions
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Laurent Schwartz (1915-2002)

[Formal or explicit (for locally-integrable functions)]

Mathematical context

S(Rd): Schwartz’s space of smooth and rapidly-decaying functions on Rd

' : Rd ! R (or C)
x 7! '(x)

L2(Rd): space of square-integrable functions on Rd

L2-norm: kfkL2 =

✓Z

Rd

|f(x)|2dx
◆ 1

2

L2(Rd) =
�
f : Rd ! R with f measurable and kfkL2 < 1

 
= (S(Rd), k · kL2)

S 0(Rd): the space of continuous linear functionals on S(Rd) = tempered distributions

f : S(Rd) ! R (or C)
' 7! hf,'i =

Z

Rd

f(x)'(x)dx

Continuous and dense embeddings: S(Rd)
d.
,�! L2(Rd)

d.
,�! S 0(Rd)



RKHS representer theorem for L2 regularization
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(Schölkopf-Smola 2001)

Sample values: f =
�
f(x1), . . . , f(xM )

�

Supports the theory of SVM, kernel methods, variational splines, etc.

(P2) argmin
f2H

 
MX

m=1

|ym � f(xm)|2 + �kfk2
H

!

    

’
Representer theorem for L2-regularization
The generic parametric form of the solution of (P2 ) is

f(x) =
MX

m=1

amrH(x,xm)

Convex loss function: E : RM ⇥ RM ! R

(P2’) argmin
f2H

�
E(y,f) + �kfk2

H

�

(deBoor 1966; Poggio-Girosi 1991)

rH : Rd
⇥ Rd

! R is the (unique) reproducing kernel for the Hilbert H ⇢ S
0(Rd) if

rH(·,x0) 2 H for all x0 2 Rd

f(x0) = hrH(·,x0), fiH for all f 2 H and x0 2 Rd

(p = 2)

, �(·� x0) 2 H
0

Learning with Shallow Neural Networks

Question

What kinds of functions do shallow neural networks learn?

30 / 69

8

(U.-Fageot-Ward, 2017; Savarese 2019; Parhi-Nowak 2020)

Standard training with weight decay

(NN-1) : arg min
✓=(v,w,b,c)

MX

m=1

��ym � f✓(xm)
��2 + �

2

KX

k=1

|vk|2 + |wk|2

= c0 + c1x+
K0X

k=1

ak(x� ⌧k)+

K neurons

And what about neural networks ?
Shallow univariate ReLU neural network with skip connection

f✓(x) = c0 + c1x+
KX

k=1

vk(wkx� bk)+

Theorem
For any K � K0 (with K0 < M ), the solution of (NN-1) is achieved by the sparse adaptive spline:

fspline = arg min
f2BV(2)(R)

 
MX

m=1

|ym � f(xm)|2 + �kD2fkM

!
.

Link with splines (gTV)



Proper continuous counterpart of     -norm
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Johann Radon (1887-1956)

`1

Dual definition of `1-norm (in finite dimensions only)

kfk`1 =
NX

n=1

|fn| = sup
u2RN : kuk11

hf ,ui

Space of bounded Radon measures on Rd

M(Rd) =
�
C0(Rd)

�0
= {f 2 S 0(Rd) : kfkM

M
= sup

'2S(Rd): k'k11
hf,'i < +1}

Superset of L1(Rd)

8f 2 L1(Rd) : kfkM = kfkL1 ) L1(Rd) ⇢ M(Rd)

Space C0(Rd) of functions on Rd that are continuous, bounded, and decaying at infinity

C0(Rd) = (S(Rd), k · kL1) ⇢ L1(Rd)

Extreme points of unit ball in M(Rd): ek = ±�(·� ⌧ k) with ⌧ k 2 Rd

2

Multi-dimensional extension via hyper-spherical measures
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(Duval-Peyré 2014; Bach 2017)

Reproducing kernel Banach space (RKBS)

B = {fµ : µ 2 M(⇥)},

fµ(x) =

Z

⇥
⇢(x, ✓)�(✓)dµ(✓)

kfkB = inf{kµkM : fµ = f}

argmin
f2B

 
MX

m=1

|ym � f(xm)|2 + �kfkB

!

) f(x) =
K0X

k=1

ak⇢(x, ✓k)

(Bartolucci-DeVito-Rosasco-Vigogna; ACHA 2023)

Hyper-spherical counterpart of spike deconvolution problem

arg min
µ2M(R⇥Sd�1)

 
MX

m=1

|ym � R⇤{� ~ µ}(xm)|2 + �kµkM

!

Existence of solutions of the form: f(x) =
K0X

k=1

ak�(⇠
T
kx� tk)

Integral representation of infinite-width shallow neural network

f(x) =

Z

R⇥Sd�1

�(⇠Tx� t)dµ(t, ⇠)µ(·, ⇠)}(x) = R⇤{� ~ µ(·, ⇠)}(x) R⇤: Radon’s backprojection operator



 
OUTLINE
■ Connection with computational imaging ✔
■ Variational formulation of learning: State-of-the-art ✔
■ Classical RKHS and kernel methods
■ Optimality results for shallow ReLU neural networks

■Radon-domain regularization yields neural nets
■ Admissible regularization operators
■ Null space of polynomials
■ Unifying representer theorem
■ Native spaces
■ Example of admissible (operator, activation) pairs
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Admissible regularization operator
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Example

L = � (Laplacian) with bLrad(!) = �!2, �0 = �1 = 2, and n0 = 1.

Definition
An isotropic regularization operator with frequency profile bLrad(!) is spline-admissible with a
polynomial null space of degree n0 (possibly trivial) if

1. bLrad(!) does not vanish over R, except for a zero of order �0 2 (n0, n0 + 1] at the
origin; that is, |bLrad(!)|/|!|�0 = C0 as ! ! 0.

2. Ellipticity: There exists an order �1 > 1, a constant C1 > 0, and a radius R1 > 0 such
that |bLrad(!)| � C1|!|�1 for all |!| > R1.

Isotropic convolution operator

A linear operator L : S(Rd) ! S 0(Rd) that is shift-invariant and isotropic is uniquely
characterized by its radial frequency profile bLrad : R ! R.

Fourier symbol of L: bL(!) = bLrad(k!k)



Null space of polynomials
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Proposition (Construction of biothogonal basis)
There exists an isotropic window iso 2 S(Rd) with 0  biso(!)  1 and biso(!) = 0 for k!k � 1

such that, for all k,n 2 Nd,

m⇤
n

M
= (�1)|n|@niso and hmk,m⇤

ni = �k�n (biorthogonality)

Dual space P 0
n0

=
�
p⇤0 =

P
|k|n0

b⇤km
⇤
k : kp⇤0kP 0

M
= k(b⇤k)k2 < 1

 
⇢ S(Rd)

Isotropic regularization operator L with frequency profile bLrad : R ! R

Effect of a �0th-order zero

lim!!0
|bLrad(!)|
|!|�0 = C0 ) annihilates polynomials of degree n0 = d�0 � 1e

The space Pn0 of polynomials of degree n0

Taylor (or monomial) basis: mk(x)
M
= xk

k!

Pn0 = {p0 =
P

|k|n0
bkmk : kp0kP

M
= k(bk)|k|n0k2 < 1}.

The Radon transform: Classical integral formulation
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Unit sphere: Sd�1 = {⇠ 2 Rd : k⇠k = 1}

x2

Hyperplane P⇠0,t0 = {x 2 Rd : ⇠0
Tx = t0}

t0

x1

x3

Radon transform of f 2 L1(Rd)

R{f}(t, ⇠) =
Z

⇠Tx=t
f(x)dx

=

Z

Rd

�(t� ⇠Tx)f(x)dx, (t, ⇠) 2 R⇥ Sd�1

Backprojection operator: From Radon domain to Euclidean space

R⇤{g}(x) =
Z

Sd�1

g(⇠Tx|{z}
t

, ⇠)d⇠, x 2 Rd

Fourier slice theorem

R{f}(t, ⇠0) =
1

2⇡

Z

R
f̂(!⇠0)e

i!td! = F�1
!!t{f̂(!⇠0)}{t}

Fourier transform:

f̂(!) =
1

(2⇡)d

Z

Rd

f(x)e�ih!,xidx



New twist: Generic, Radon-domain regularization
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Isotropic regularization operator L with frequency profile bLrad : R ! R

“Radonized” version of the operator:
LR = KradRL

Role of each operator

L: differential operator such as Laplacian, to penalize high frequency components

R: Radon transform, to project in hypersherical domain with (t, ⇠) 2 R⇥ Sd�1

Krad: isotropic Radon-domain filtering with bKrad(!) / |!|d�1, to facilitate inversion

Non-trivial null space

L and LR share the same null space: Pn0

Canonical scenario: n0 = 1 (affine maps)

Makes the inversion process more difficult

“Easy” case where L is invertible = trivial null space

L�1L = Id on S 0(Rd)

LR has a trivial null space

Inversion of Radon transform: R⇤KradR = Id on S 0(Rd)

) L�1
R = L�1R⇤ (Ludwig 1966)

Representer theorem for neural nets: Context
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Given the data points (xm, ym) 2 Rd ⇥ R, find f : Rd ! R s.t. f(xm) ⇡ ym for m = 1, . . . ,M

Variational formulation with Radon-domain regularization

S = arg min
f2MLR

(Rd)

MX

m=1

E
�
ym, f(xm)

�
+  

�
kLRfkM(R⇥Sd�1)

�

Regularization operator: LR = KradRL : MLR(Rd) ! MRad where L is admissible

Native space: MLR(Rd) = Banach space that is isometrically isomorphic to MRad ⇥ Pn0

MRad = Meven(R⇥ Sd�1): Banach space of Radon-compatible bounded measures

E : R⇥ R ! R+ is a strictly-convex loss functional.

 : R+ ! R+ is some arbitrary strictly-increasing convex function.



Theoretical ingredients
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Factoring out the null space: (Id� ProjPn0
){f} = f �

X

|k|n0

hf,m⇤
ki mk

(Unser, JMLR 2023)

(U.-Fageot-Ward, SIAM Rev 2017)

Dealing with the non-trivial null space of LR

Take inspiration from spline theory

(U.-Aziznejad, ACHA 2022)

) Banach-space variant of the distributional theory of the Radon transform

Specification of Euclidean-to-Radon-domain isomorphisms

Problem: the Radon transform is not surjective on S (resp., S 0)

Identification of proper hyperspherical Banach subspace
MRad ⇢ M(R⇥ Sd�1) over which R⇤ is invertible Y 0

R⇤

MRad

KradR

Abstract representer theorem for Banach space with semi-norm penalties

Prove that MLR is a Banach space

Establish weak* continuity of sampling functionals
(Unser FoCM in press)

Representer theorem for neural nets
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Special case of abstract rep theorem for direct sums (U.-Aziznejad, ACHA 2022)

(1)S = arg min
f2MLR

(Rd)

MX

m=1

E
�
ym, f(xm)

�
+  

�
kLRfkM(R⇥Sd�1)

�

LR = KradRL : MLR(Rd) ! M(R⇥ Sd�1)

S

fext

Theorem
The solution set S of Problem (1) is non-empty and weak* compact. It is the weak*
closure of the convex hull of its extreme points, which can all be written as

fext(x) = p0(x) +
K0X

k=1

ak⇢rad(⇠
T
kx� ⌧k)

with a fixed activation function ⇢rad = F�1{1/bLrad}, for some K0  M�dimPn0 ,
(ak, ⇠k, ⌧k) 2 R ⇥ Sd�1 ⇥ R for k = 1, . . . ,K0, and a null-space component
p0 2 Pn0 . The corresponding regularization cost (shared by all solutions) is
kLRfextkM(R⇥Sd�1) =

PK0

n=1 |ak|.



Special case: Laplacian

19

) Shallow ReLU net: fext(x) = c0 + cTx+
K0X

k=1

ak(⇠
T
kx� ⌧k)+

sum of elementary (ReLU) ridges = ridge spline

Properties of the (negative) Laplacian

(��)f(x) = �
Pd

n=1
@2

@x2
n
f(x)

Frequency symbol: k!k2 ) b�rad(!) = !2 (radial profile)

Annihilates all affine functions: n0 = 1

Outcome of representer theorem with LR = KradR(��)

Null space: P1 = {p0(x) = b0 + bTx : (b0, b) 2 Rd+1}

Activation function: ⇢rad(t) = F�1{ 1
!2 }(t) = 1

2 |t| = t+ � 1
2 t

(Parhi-Nowak 2021)

Limit behaviour of multivariate 2-layer ReLU neural nets
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(Ongie et al. 2020; Parhi-Nowak 2021)

K neurons
Shallow ReLU neural network Rd ! R with skip connection

f✓(x) = c0 + cT1x+
KX

k=1

vk(w
T
kx� bk)+

Standard training with weight decay on v = (vk) and W = [w1 . . .wK ]

(NN-d) : arg min
✓=(v,W,b,c)

MX

m=1

��ym � f✓(xm)
��2 + �

2

KX

k=1

|vk|2 + kwkk2

Learning with Shallow Multivariate Neural Networks

Question

What kinds of functions do shallow multivariate neural networks
learn?

35 / 69

= c0 + cT1x+
K0X

k=1

ak(⇠
T
kx� ⌧k)+

Theorem
For any K � K0 (with K0 < M ), the solution of (NN-d) is achieved by the sparse ridge spline:

fridge = arg min
f2M�R

(Rd)

 
MX

m=1

|ym � f(xm)|2 + �kKradR�fkM(R⇥Sd�1)

!
.

Delicate point: Proper delineation of the native space M�R(Rd)



NATIVE SPACES

Hyper-spherical (test) functions and distributions
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Test functions and tempered distributions

(�, g) 2 S(R⇥ Sd�1)⇥ S 0(R⇥ Sd�1)

g : � 7! hg,�iRad 2 R

For locally integrable functions g : (t, ⇠) 7! R:

hg,�iRad =

Z

Sd�1

Z

R
g(t, ⇠)�(t, ⇠)dtd⇠

Radon transform and its adjoint

R : S(Rd) ! S(R⇥ Sd�1)

R⇤ : S 0(R⇥ Sd�1) ! S 0(Rd)

R⇤ is the unique linear operator such that

8' 2 S(Rd) : hR⇤{g},'i = hg,R{'}iRad

Special case: d = 2

⇠ = (cos ✓, sin ✓) with d⇠ = d✓ for ✓ 2 [0, 2⇡]

hg,�iRad =

Z 2⇡

0

Z

R
g(t, ✓)�(t, ✓)dtd✓



Radon transform on 
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S(Rd)

(Gelfand 1962; Helgason 1965; Ludwig 1966)
Radon-domain filtering operator

Krad: “radial” operator that acts along the Radon-domain variable t

Radial frequency response: bKrad(!) = cd|!|d�1

R

SRad

S(Rd)

R�1 = R⇤Krad

Theorem (Invertibility of Radon transform on S(Rd))

1. R continuously maps S(Rd) ! SRad ⇢ S(R⇥ Sd�1)

2. R⇤KradR = Id on S(Rd) , R�1 = R⇤Krad on SRad = R
�
S(Rd)

�

R�1 R

SRad

S(Rd)

Distributional theory of the (filtered) Radon transform
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R�1 R

(R⇤)�1 R⇤

S 0
Rad

S 0(Rd)

Theorem (Characterization of the range space)
Let � 2 S(R⇥ Sd�1). Then, � 2 SRad

M
=
�
� = R{'} : ' 2 S(Rd)

 
iff.

1. Evenness: �(t, ⇠) = �(�t,�⇠).

2. �k(⇠) =
R
R �(t, ⇠)tkdt is a homogeneous polynomial in ⇠ 2 Sd�1 for any k 2 N0

R : S(Rd) ! S(R⇥ Sd�1) Difficulty: injective but not surjective !

(Gelfand 1962; Helgason 1965; Ludwig 1966)

Theorem (Variant on invertibility of Radon transform)

SRad = R
�
S(Rd)

�
is a closed subspace of S(R⇥ Sd�1). Moreover,

1. R : S(Rd) ! SRad is a continuous bijection, with R⇤KradR = Id on S(Rd)

2. R⇤Krad : SRad ! S(Rd) is a continuous bijection, with RR⇤Krad = Id on SRad

3. R⇤ : S 0
Rad ! S 0(Rd) is a continuous bijection with KradRR⇤ = Id on S 0

Rad.



R�1 R

SRad

S(Rd)

Banach space theory of the (filtered) Radon transform
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X =
�
S(R⇥ Sd�1), k · kX

�
⇢ S 0(R⇥ Sd�1)

X 0 =
�
g 2 S 0(R⇥Sd�1) : kgkX 0 < 1

 
with kgkX 0 = sup

�2S(R⇥Sd�1): k�kX1
hg,�iRad

Theorem (Radon-compatible Banach isometries)

Let k'kY
M
= kR{'}kX . Then, R : (S(Rd), k · kY) ! (SRad, k · kX ) has a unique

isometric extension R : Y ! XRad with Y = (S(Rd), k · kY). Moreover,

1. R⇤Krad : XRad ! Y is an isometric bijection, with RR⇤Krad = Id on XRad

2. R⇤ : X 0
Rad ! Y 0 is an isometric bijection with KradRR⇤ = Id on X 0

Rad.

XRad

Y

R�1 R

X 0
Rad

Y 0

(R⇤)�1 R⇤

XRad = (SRad, k · kX ) ⇢ X

(Unser, JMLR 2022)

Hyper-spherical functions and measures
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Banach space of hyper-spherical bounded Radon measures

M(R⇥ Sd�1) =
�
C0(R⇥ Sd�1)

�0
where C0(R⇥ Sd�1) = (S(R⇥ Sd�1), k · kL1)

Null space of R⇤: ker(R⇤) =
�
g 2 M(R⇥ Sd�1) : hR{'}, giRad = h',R⇤{g}i = 0, 8' 2 S(Rd)

 

(Neumayer-U., Anal. and Appl. 2023)Theorem (Inversion of backprojection operator)

The quotient space MRad = M(R ⇥ Sd�1)/ker(R⇤) is a Banach space that is isometrically
isomorphic to Meven(R⇥ Sd�1). Consequently, KradRR⇤ = Id on Meven (resp., MRad).

C0,even(R⇥ Sd�1) = (SRad, k · kL1) ⇢ C0(R⇥ Sd�1)

Lp,even(R⇥ Sd�1) = (SRad, k · kLp) ⇢ Lp(R⇥ Sd�1), p 2 (1,1)



Native space for Radon-domain regularization
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Radon-domain M-norm : kgkM
M
= sup

�2S(R⇥Sd�1):k�kL11
hg,�iRad,

Regularization functional: kLRfkM with LR = KradRL : MLR(Rd) ! MRad

Native space

MLR(Rd) = L†
R

�
MRad

�
� Pn0

= {f = L†
R{w}+ p0 : (w, p0) 2 MRad ⇥ Pn0},

Null space of L and LR: P = Pn0 = span{mk}|k|n0
with mk(x) =

xk

k!

Right-inverse of LR on MRad: L†
R = (Id� ProjP)L

�1R⇤

Projector ProjP : S 0(Rd) ! P : f 7!
X

|k|n0

hf,m⇤
kimk with m⇤

k = (�1)|k|@kiso 2 S(Rd)

Properties of native space
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Theorem
Let L be an admissible operator with a polynomial null space P = Pn0 (possibly trivial) of degree n0.

1. The space MLR(Rd) = U 0 � P equipped with the composite norm kfkMLR
= kLR{f}kM +

kProjP{f}kP is complete and isomorphic to MRad ⇥ P

2. The operators LR = KradRL : MLR ! MRad and L†
R = (Id � ProjP)L

�1R⇤ : MRad !
L1,�n0(Rd) are continuous and have the following properties:

8w 2 MRad : LRL
†
R{w} = w

8p0 2 P : LR{p0} = 0

8f 2 MLR(Rd) : L†
RLR{f} = (Id� ProjP){f} = ProjU 0{f}.

3. Embeddings: S(Rd) ,�! MLR(Rd) ,�! L1,�n0(Rd)
d.
,�! S 0(Rd).

Right-inverse property: U 0 = L†
R(MRad) , LR(U 0) = MRad

L1,�n0(Rd) =
�
f : Rd ! R s.t. supx2Rd(1 + kxk)�n0 |f(x)| < 1

 

(Unser FoCM in press)



Schwartz kernel of pseudo-inverse operator
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Adjoint pair of pseudo-inverse operators

L†
R = (Id� ProjP)L

�1R⇤ : S(R⇥ Sd�1) ! S 0(Rd) (Right-inverse of LR)

L†⇤
R = RL�1⇤(Id� ProjP0) : S(Rd) ! S 0(R⇥ Sd�1) (Left-inverse of L⇤

R)

Theorem (Generalized impulse response of L†⇤
R )

Let L be an admissible operator with a polynomial null space P = Pn0 (possibly trivial) of degree n0,
a frequency profile bLrad : R ! R, and ⇢rad(t) = F�1{1/bLrad}(t). Then,

h
�
x0, (t, ⇠)

� M
= L†⇤

R {�(·� x0)}(t, ⇠)

= ⇢rad(t� ⇠Tx0)�
n0X

n=0

(�⇠Tx0)n

n!

�
rad ⇤ @n⇢rad

�
(t)

with h
�
x0, ·

�
2 C0(R⇥ Sd�1) and

sup
(x0,⇠)2Rd⇥Sd�1

(1 + |⇠Tx0|)�n0kh
�
x0; (·, ⇠)

�
kLq(R) < 1.

for any q 2 [2,1].

(Unser FoCM in press)

Kernel of stable right-inverse of “radonized” Laplacian
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Continuity bound (non-trivial):

x 7! h(x; t0, ⇠0)

-2 -1 0 1 2
-0.5

0.0

0.5

1.0

1.5

2.0

along direction of the ridge; i.e., x = s⇠0

t 7! h(x0; t, ⇠0)

-2 -1 0 1 2
-0.5

0.0

0.5

1.0

1.5

2.0

with ⇠T0x0 = Const

(under simplifying assumption: rad = �)

Dictionary elements 
= extreme points of unit ball

���†
R{w}(x)

��  kh(x; ·)kL1 kwkM  (1 + kxk) kwkMIntegral representation

�†
R : w 7! f(x) =

Z

R

Z

Sd�1

h(x; t, ⇠)w(t, ⇠)d⇠dt where

h(x; t, ⇠) = 1
2 |⇠

Tx� t|�(rad ⇤ 1
2 | · |)(t) + (⇠Tx)(rad ⇤ 1

2 sign)(t),

where rad 2 Seven(R) is a normalized radial smoothing kernel.



Admissible (activation, operator) pairs
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Anti-symmetric extension

Replace symmetric filtering operator Krad

by anti-symmetric eKrad = HradKrad.

Hrad: Hilbert transform

Bottom line

Choice of L (resp., LR) and symmetry
fixes activation � = ⇢rad and vice versa

(Barron 1993)

⇢rad(t) ⇢̃rad(t) bLrad or b̃
Lrad n0 (null space)

Exponential

e�|t| N/A 1 + |!|
2

�1 (trivial)

Classical sigmoids
tanh(

t
2 )

2 = 1
2 + 1

1+e�t
sinh(⇡!)

⇡ 0 (bias)

arctan(t)
⇡ !e|!| 0

Ridge splines (of degree n 2 N)
1
2 |t| (or ReLU) t log |t| |!|

2 1 (a�ne)

/ t
2n log |t| sign(t)|t|2n

(2n)! |!|
2n+1 2n � 2 (even)

1
2

|t|2n+1

(2n+1)! / t
2n+1 log |t| |!|

2n+2 2n + 1 � 1 (odd)

Fractional splines (degree ↵ 2 R+
\N)

|t|↵ sin(↵⇡
2 )

⇡�(↵)
sign(t)|t|↵ cos(↵⇡

2 )
⇡�(↵) |!|

↵+1
d↵e

Table 1: Examples of admissible symmetric and anti-symmetric activa-
tion functions with their corresponding regularization operator. The anti-
symmetric activation is given by (65) and requires the use of the modified
filter K̃rad in the statement of Theorem 5.

space that consists of the polynomials of degree n0 = 0 (the constants). The
symmetric spline activations of odd degree m � 1 and the anti-symmetric
ones of even degree are also known: they coincide with the ridge splines of
Parhi and Novak, which are tied to the Radon-domain operator Lrad = @m

@tm

[36]. With the present formulation, we can seamlessly extend this family to

fractional orders, in direct analogy with [54], by setting L = (��)
↵+1
2 .

5 Supporting Mathematical Results

To answer the fundamental issue of the existence of a solution in Theorem
5, we need to 1) prove that the “predual” space XL(Rd) is a proper Banach
space (Theorem 9); and 2) establish the weak* continuity of the sampling
functionals �(· � xk). As we shall see, both aspects largely rest upon the
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Painting “fractional B-spline” by Annette Unser 

M. Unser, T. Blu, “Fractional Splines and Wavelets,” SIAM Review, March 2000.



CONCLUSION:   Return of the spline
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■ Foundations of functional learning
■ Functional optimization in Banach spaces (enabled by representer theorems)
■ Hilbert spaces: the tools of classical ML
■ Non-reflexive Banach spaces: for sparsity-promoting regularization (e.g., CS)
■ Isotropy + Radon transform: The key for obtaining pointwise nonlinearities

■ Splines and machine learning
■ Traditional kernel methods are closely related to splines  

■ Free-form activations with TV(2)-regularization ⇒ Deep splines 

1732
172■ Sparsity-promoting regularization offer promising perspectives

■ Radon-domain regularization ⇒ Unifies Shallow neural nets and RBF methods

■ Functional composition = hierarchical splines
■ Deep ReLU neural nets are high-dimensional piecewise-linear splines

… and the same holds true for ReLU nets …

 
ACKNOWLEDGMENTS
Many thanks to (former) members of
EPFL’s Biomedical Imaging Group
■ Prof. Rahul Parhi
■ Dr. Shayan Aziznejad
■ Dr. Julien Fageot
■ Prof. John Paul Ward
■ Dr. Thomas Debarre
■ Dr. Mike McCann
■ Dr. Harshit Gupta
■ Prof. Kyong Jin
■ Dr. Fangshu Yang
■ Dr. Emrah Bostan
■ Prof. Ulugbek Kamilov
■      ....

34

■ Prof. Demetri Psaltis
■ Prof. Marco Stampanoni
■ Prof. Carlos-Oscar Sorzano
■ Prof Luigi Ambrosio
■ ….

and collaborators ...

FunLearn

3



References

35

http://bigwww.epfl.ch/
Sparse adaptive splines

M. Unser, J. Fageot, J.P. Ward, “Splines Are Universal Solutions of Linear Inverse Problems with Generalized-TV
Regularization,” SIAM Review, vol. 59, No. 4, pp. 769-793, 2017.

T. Debarre, Q. Denoyelle, M. Unser, J. Fageot, “Sparsest Continuous Piecewise-Linear Representation of Data,”
Journal of Computational and Applied Mathematics, vol. 406, paper no. 114044, pp. 1-30, 2022.

Representer theorems

M. Unser, “A Representer Theorem for Deep Neural Networks,” Journal of Machine Learning Research, vol. 20,
no. 110, pp. 1-30, Jul. 2019.

M. Unser, “A Unifying Representer Theorem for Inverse Problems and Machine Learning,” Foundations of Com-

putational Mathematics, vol. 21, pp. 941–960, 2021.

M. Unser, S. Aziznejad, “Convex optimization in sums of Banach spaces,” Applied and Computational Harmonic

Analysis, vol. 56, no. 1, pp. 1-25, 2022.

Neural networks and the Radon transform

M. Unser, “Ridges, Neural Networks, and the Radon Transform”, Journal of Machine Learning Research, vol. 24,
no. 37, pp. 1-33, 2023.

S. Neumayer, M. Unser, “Explicit Representations for Banach Subspaces of Lizorkin Distributions,” Analysis and
Applications vol. 21, no. 5, pp. 1223–1250, September 2023. Preprint arXiv:2203.05312 [math.FA]

M. Unser, “Unifying Variational Formulation of Supervised Learning: From Kernel Methods to Neural Networks,”
Foundations of Computational Mathematics (in press). Preprint arXiv:2206.14625 [cs.LG]


