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Variational formulation of inverse problems in imaging

m Linear forward model

noise .
Sinogram = Radon transform of s

linear N | - . —
) N,  y=Hs+n
H n

Problem: recover s from noisy measurements y

m Regularization of ill-posed inverse problem

Srec = argsIélﬂi%% ”y - HS”% + >‘||LS||£ , p=12
— ——

data consistency  regularization



The Radon transform and the FBP algorithm

Unitcircle: S!'={¢eR?: €| =1} = {€ = (cos,sinb),0 € [0,2m)}

@
m Radon transform of s € L;(R?) ©

DY S

R{s}(t.€) = / s(z)dz

rCcR2: ¢Te=t

= | o(t—¢"x)s(x)dx, (t,&) eR xSt
R2

(\
N ¢

\\\1 .

m Reconstruction from y(¢, &) = R{s}(¢, €): the Filtered BackProjection algorithm

s = R'Kyaa{y}

= K,,q: “radial” filtering in Radon space along the variable ¢t € R.
Fourier symbol K aq(w) o |w|

= R*: backprojection operator (the adjoint of R)

Supervised learning as a (linear) inverse problem

but an infinite-dimensional one ...

Given the data points (Z,,, ym) € RY x R, find f : RY - R st f(x,) ~ynmform=1,...,M

m Introduce smoothness or regularization constraint (p=2)

R(f)=fll5 = ILfIZ, = / |Lf(z)|?dz: regularization functional
RN

M
mingey R(f) subjectto > |ym — f(xm)|” < 0

m=1

m Regularized least-squares fit (theory of RKHS)
M

fricus = arg min (Z Y — Flam)|” + /\R(f)> with  R(f) = [ f]13
m=1

(Poggio-Girosi 1990)

GLASSIGS

= kernel estimator

(Wahba 1990; Schélkopf 2001)



OUTLINE

= Connection with computational imaging v ENGNF
= Variational formulation of learning: State-of-the art FE

Classical RKHS and kernel methods
Optimality results for shallow ReLU neural networks

= Radon-domain regularization for neural nets
Admissible regularization operator

Unifying representer theorem

Laplacian revisited
Examples of admissible (operator, activation) pairs

(surprize?) = connection with fractional splines

Functions vs. distributions

m Mathematical context

= S(R?): Schwartz’s space of smooth and rapidly-decaying functions on R¢
¢:R¥ SR (orC)
x — o(x)

Laurent Schwartz (1915-2002)

= S’(R%): the space of continuous linear functionals on S(R?) = tempered distributions

f:S(RY =R (orC)

o= (f,p) = f(@)p(x)dx [Formal or explicit (for locally-integrable functions)]
Rd

m L,(R?): space of square-integrable functions on R?
e Lanom: [ fl, = ( [ f(@)a)
Rd
s Ly(R%) = {f:R*— R with f measurable and || f|., < oo} = (S(RY),]-|L,)

= Continuous and dense embeddings:  S(R?) <% Ly(R?) <5 &' (R9)



RKHS representer theorem for L> regularization (p = 2)

(P2) arg mln (Z [Yym — f(@m)|” + /\|f|H> (deBoor 1966; Poggio-Girosi 1991)

r# : REx R? — R is the (unique) reproducing kernel for the Hilbert £ C S’ (R?) if
w73 a0) € H forall zo € R & 6(-—xo) eH
= f(m()) = <T‘H(-,w0),f>;.[ for all f € Hand x € R?

Convex loss function: E : RM x RM — R Sample values: f = (f(z1),.... f(zm))

(P2)  argmin (E(y, f) + A/ %) (Schélkopf-Smola 2001)

Representer theorem for L,-regularization
The generic parametric form of the solution of (P2’) is

M
x) = Z am T3 (2, Tm)
m=1

Supports the theory of SVM, kernel methods, variational splines, etc.

And what about neural networks ? Link with splines (gTV)

m Shallow univariate RelU neural network with skip connection

K Ko
fo(x) =co+crz+ ka(wkw —bi)+ =co+cz+ Zak(:c — Tk)+
k=1 k=1

m Standard training with weight decay
M K

. 2 A
(NN-1) : arg, min Z |Yym — fo(zm)|” + 5 Z vk + w2
svwbe) n 5 k=1

Theorem
Forany K > Ky (with Ky < M) the solution of (NN-1) is achieved by the sparse adaptive spline:

2 2
e = A min E — :1 + A|D
fsphne rg ie 1(2)( ) ( |ym m | )\H f||M>

K neurons

(U.-Fageot-Ward, 2017; Savarese 2019; Parhi-Nowak 2020)



Proper continuous counterpart of /1-norm

= Dual definition of £1-norm (in finite dimensions only)

N
1fle =S 1ful = swp (fou)
n=1

WERN: [[uf o<1

Johann Radon (1887-1956)
= Space Cg(Rd) of functions on R< that are continuous, bounded, and decaying at infinity

Co(RY) = (S®RY), [ - [l2..) C Loo(R?)

= Space of bounded Radon measures on R

MR = (Co®RY) = {f € S®RY) : || fllm = sup  (f,p) < +oo}

PES(RT): |leplloo <1
= Superset of L;(R%)
Vi€ Li®RY): Nfllm=flle, = LiRY) C MR

= Extreme points of unit ball in M(R%): e = £6(- — 71) with 75, € R?

Multi-dimensional extension via hyper-spherical measures
m Integral representation of infinite-width shallow neural network

f(z) = /R s o(€Tx — t)du(t, &)u(-, €)}(x) = R*{o ® u(-, &)} x) R*: Radon’s backprojection operator

m Hyper-spherical counterpart of spike deconvolution problem (Duval-Peyré 2014; Bach 2017)

M
. miR* m 2 A
argueMﬂ%i‘sm(Z'y {0 ® u}(em)® + ||u||M>

m=1

Ko
Existence of solutions of the form: f(x) = Z aro (€L @ — ty)
k=1

m Reproducing kernel Banach space (RKBS) (Bartolucci-DeVito-Rosasco-Vigogna; ACHA 2023)
B={f,:peM@O)}
() = [ ol 0)5(0)aul0)
<) Ko
£l = inf{lllc: fu = £} = ) =S akplo B0)

k=1

M
arg min (mE:l [Ym — flzm)* + /\|f|5>

10



OUTLINE

= Connection with computational imaging ¢

= Variational formulation of learning: State-of-the-art v/

Classical RKHS and kernel methods
Optimality results for shallow ReLU neural networks

= Radon-domain regularization yields neural nets

Admissible regularization operators

Null space of polynomials

Unifying representer theorem

Native spaces

Example of admissible (operator, activation) pairs

Admissible regularization operator

m Isotropic convolution operator

A linear operator L : S(R?) — &'(R9) that is shift-invariant and isotropic is uniquely
characterized by its radial frequency profile Erad R —=R.

Fourier symbol of L:  L(w) = Lyaa(||w]])

Definition
An isotropic regularization operator with frequency profile Erad(w) is spline-admissible with a
polynomial null space of degree n( (possibly trivial) if

1. frad(w) does not vanish over R, except for a zero of order vy € (no,no + 1] at the
origin; that is, | Lyaq(w)|/|w|" = Cp as w — 0.

2. Ellipticity: There exists an order v; > 1, a constant C; > 0, and a radius R; > 0 such
that | Lraa(w)| > Cylw| for all |w| > R;.

m Example

L = A (Laplacian) with Lyaq(w) = —w?, v0 =71 = 2, and ng = 1.

12
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Null space of polynomials
Isotropic regularization operator L with frequency profile Erad R—R

m Effect of a vyth-order zero

limg, 0 %‘# =Cy = annihilates polynomials of degree ng = [0 — 1]

m The space P, of polynomials of degree n,

. . A gk
= Taylor (or monomial) basis: mg(x) = Zr

= Pro = {90 = X kj<no tmie : [[Pollp = 1| (k) k<o ll2 < 00}

Proposition (Construction of biothogonal basis)
There exists an isotropic window s, € S(R?) with 0 < iso(w) < 1 and Rigo(w) = 0for ||w]| > 1
such that, for all k,n € N,

mi 2 (=)Mo ki, and  (mg,mi) = 6_n (biorthogonality)

m Dual space P}, = {5 = Xjpin b« [05lle 2 [1(B3)]l2 < oo} € S(RY)

The Radon transform: Classical integral formulation

_ d.g Tyt
Unit sphere:  S% ! = {¢ e R?: ||€]| =1} o Hyperplane Pe, 1, = {x € R®: §, @ = to}

m Radon transform of f € L;(R9)

R{f}(1.€) = / f(@)dz

ETax=t

= [ 3t €Ta)f(apn, (1R xS
Rd
m Backprojection operator: From Radon domain to Euclidean space

Riohe) = [ azoi wer
t
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m Fourier slice theorem Fourier transform:

R{FHE&0) = 5= | Flugo)e"du = 7L {F o O flw) = o [ e e




New twist: Generic, Radon-domain regularization

Isotropic regularization operator L with frequency profile Erad R—R
“Radonized” version of the operator:
Lr = KraaRL

m Role of each operator

= L: differential operator such as Laplacian, to penalize high frequency components
= R: Radon transform, to project in hypersherical domain with (¢,£) € R x S9!

s K,.q: isotropic Radon-domain filtering with IA(rad(w) x \w|d*1, to facilitate inversion

m “Easy” case where L is invertible = trivial null space m Non-trivial null space

s L7'L = Id on S'(RY) = L and Ly share the same null space: P,,,

= Ly has a trivial null space = Canonical scenario: ng = 1 (affine maps)

= Inversion of Radon transform: R*K,,qR = Id on Sf(Rd) = Makes the inversion process more difficult

= Lg'=L"'R* (Ludwig 1966)

Representer theorem for neural nets: Context
Given the data points (€., ym) € RE x R, find f : R = R st f(xy,) = ymform=1,..

m Variational formulation with Radon-domain regularization

M
S=arg min 3 Blym, f(@n) + 0 (Il flmxssn)

m=1

Regularization operator: Ly = K;,qRL : My, (Rd) — MRaa Where L is admissible

Native space: My, (R?) = Banach space that is isometrically isomorphic to Mgaq X P,

MRad = Meyen (R x S71): Banach space of Radon-compatible bounded measures

= F:R xR — RT is a strictly-convex loss functional.

= 1) : RT — RT is some arbitrary strictly-increasing convex function.

15
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Theoretical ingredients

m Specification of Euclidean-to-Radon-domain isomorphisms @

= Problem: the Radon transform is not surjective on S (resp., S’) K,.qR R*

= ldentification of proper hyperspherical Banach subspace
MRaq € M(R x S?1) over which R* is invertible

= Banach-space variant of the distributional theory of the Radon transform

(Unser, JMLR 2023)
m Dealing with the non-trivial null space of Ly

= Take inspiration from spline theory (U.-Fageot-Ward, SIAM Rev 2017)

Factoring out the null space: (Id — Projp, ){f} =f— Y (f,mi) mu
[k|<ng

m Abstract representer theorem for Banach space with semi-norm penalties (U.-Aziznejad, ACHA 2022)

= Prove that My, is a Banach space (Unser FOCM in press)

= Establish weak* continuity of sampling functionals

17

Representer theorem for neural nets
M

S = arg fe/\fllii;l(Rd) Z E(ym, f(®m)) + ¢ (|ILrf | m@rxsa-1)) (1)

m=1

Lr = KaqRL : Mp, (RY) = M(R x S41)

Theorem

The solution set S of Problem (1) is non-empty and weak* compact. It is the weak* Sext
closure of the convex hull of its extreme points, which can all be written as

Ko
fext () = po(x) + D _ akpraa(€f@ — 7k)
k=1
with a fixed activation function p,,q = ffl{l/frad}, for some Ky < M —dimP,,,
(ag, &, ) € R x S x Rfork = 1,..., Ky, and a null-space component
po € Pn,. The corresponding regularization cost (shared by all solutions) is
LR Foxt | mxse-ry = Eney lael-

Special case of abstract rep theorem for direct sums (U.-Aziznejad, ACHA 2022)
18



Special case: Laplacian

m Properties of the (negative) Laplacian
= (—A)f(x) == 18902 f(z)
= Frequency symbol: [w|? = Ana(w)=w? (radial profile)

= Annihilates all affine functions: ng = 1

m Outcome of representer theorem with Ly = K,.qR(—A)
= Null space: Py = {po(x) = by + b : (by, b) € RI+1}

= Activation function:  pyaq(t) = F {5 }(t) = 1[t| = t4 — 5t

0
= Shallow ReLU net:  foxt(x) = co + ce+ Z ak(ﬁgw — Tg)+
k=1

sum of elementary (ReLU) ridges = ridge spline (Parhi-Nowak 2021)

19

Limit behaviour of multivariate 2-layer ReLU neural nets

K neurons

m Shallow RelLU neural network R¢ — R with skip connection
K Ko

fo(x) =co+clx+ ka('w{w —bi)+ =coteciz+ Zak(ﬁz:n — Tk )+
k=1 k=1

m Standard training with weight decay on v = (v;) and W = [w; ... wk]
M

K
. 2 A 2 2
NN-d) : m T m Py
(NN-d) arggz(‘%&b,c);’y fo(@m)| +2;|UI¢| + [lwyl]

Theorem
Forany K > K (with Ky < M), the solution of (NN-d) is achieved by the sparse ridge spline:

2
Jridge = argfe/vl R ( § [Ym — f(@m)|” + /\”KradRAfHM(Rde 1)>
(Ongie et al. 2020; Parhi-Nowak 2021)

Delicate point: Proper delineation of the native space M, (R?)

20



NATIVE SPACES

Hyper-spherical (test) functions and distributions

m Test functions and tempered distributions
(¢,9) € S(R x $971) x §'(R x $%°1)

g: P (g,0)rRad €R

For locally integrable functions g : (¢, &) — R:

a0 = [ [ ottt erag

m Radon transform and its adjoint
R:S(RY) — S(R x S471)
R*: S'(R x §1) — S'(RY)
R* is the unique linear operator such that
Vo e SRY): (R*{g},¢) = (9, R{¢})Raa

Special case: d = 2
& = (cosf,sin ) with d¢ = d6 for 6 € [0, 2]

27
9¢>Rad—/ / (t,0)¢(t, 0)dtdo

22



Radon transform on S(R%)

Theorem (Invertibility of Radon transform on S(R%))
1. R continuously maps S(R?) — Sgaq C S(R x S¥~1)
2. R°K;aaR =Idon S(R?) & R =R*Kiaq On Sgad = R(S(R?))
(Gelfand 1962; Helgason 1965; Ludwig 1966)
m Radon-domain filtering operator

s K,.q: “radial” operator that acts along the Radon-domain variable ¢

= Radial frequency response: IA(rad(w) = cglw|?!

23

Distributional theory of the (filtered) Radon transform

R:S(RY) — S(R x S471) Difficulty: injective but not surjective !

Theorem (Variant on invertibility of Radon transform)

Sraa = R(S(R?)) is a closed subspace of S(R x S%~1). Moreover,

1. R: S(R?) — Sgaq is a continuous bijection, with R*K,,qR = Id on S(R%) R-!

2. R*K;ad : Sraa — S(R?) is a continuous bijection, with RR*K,,q = Id on Sgraq

3. R*:Shua — S’(RY) is a continuous bijection with K,,qRR* = Id on SRad-

Theorem (Characterization of the range space)
Let¢ € S(R x S¥71). Then, ¢ € Sraa = {¢ = R{p} : ¢ € S(RY)} iff.

1. Evenness: ¢(t, &) = ¢(—t, —&).

2. (&) = [ o(t, €)t*dt is a homogeneous polynomial in & € S*~! forany k € Ny

(Gelfand 1962; Helgason 1965; Ludwig 1966)
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Banach space theory of the (filtered) Radon transform

X=(SRxS¥1), | lx) C S'(RxS)

X ={geSRxS" )t |gllar <o} with |g|lxr = sup (9, P)Rad
$ESRXSI1): [l <1

XRad = (Srad, || - lx) C X

Theorem (Radon-compatible Banach isometries)

Let lolly = [R{e}]|x. Then, R : (S(R?), | - lly) = (Sraa, || - lx) has a unique
isometric extension R : ) — XR.q with Y = (S(R9), || - ||y)). Moreover,

A
i::u@

1. R*K,.q : XRaq — Y is an isometric bijection, with RR*K, .4 = Id on XR.q

2. R* : Af,q — V' is an isometric bijection with K,,qRR* = Id on X% ,.
R

E
(jv@

(Unser, JMLR 2022)

Hyper-spherical functions and measures

m Banach space of hyper-spherical bounded Radon measures

M(R x §471) = (Co(R x $271))" where  Co(R x $471) = (SR x S471), || |[..)

Null space of R*:  ker(R*) = {g € M(R x S 1) : (R{}, g)raa = (0, R*{g}) = 0,Vp € S(R?)}

Theorem (Inversion of backprojection operator) (Neumayer-U., Anal. and Appl. 2023)

The quotient space Mp.q = M(R x S 1) /ker(R*) is a Banach space that is isometrically
isomorphic to M en (R x S971). Consequently, K;,qRR* = Id on Myen (resp., Mgaq)-

Co,even(R x $771) = (Srad, [[ - [[2..) € Co(R x 8771

Ly even(R x Sd_l) = (SRrad; || - ||Lp) C Ly(R x Sd_l)a p € (1,00)
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Native space for Radon-domain regularization

m Regularization functional: |Lr f|lar with Lgr = KpaqRL : Mp, (R?) — Mgaq

= Radon-domain M-norm: ||g|lm £ sup (g, D) Rad,

PES(RXSI™1):[|$] Loe <1

m Native space

Mg (R?) = Lf (MRad) @ Pa,
={f= LL{w} +po : (w,po0) € MRad X P, }

= Null space of L and Lg: P = Py, = span{mg}xj<n, With mg(x) = =

k!
= Right-inverse of Ly on Mg.a: L = (Id — Proj,)L'R*

= Projector Projp : S'(RY) = P: frs Y (fymi)me with mj = (—1)0%k, € S(RY)
k| <no

27

Properties of native space

Right-inverse property: U’ = LL,(MRad) < LrU') = MRaa

Theorem (Unser FOCM in press)

Let L be an admissible operator with a polynomial null space P = P,,, (possibly trivial) of degree ny.

1. The space My, (RY) = U’ © P equipped with the composite norm 1l me, = ILR{SHIM +
|IProjp{f}||» is complete and isomorphic to Mg.q X P

2. The operators Lg = K;,qRL : My, — Mpgaq and LL\ = (Id — Projp)L™'R* : MRaa —
Lo, —ny (RY) are continuous and have the following properties:

Yw € Mpaa : LrLi{w} =w
Vpo cP: LR{pO} =0
Vfe Mp, (R : LLLr{f} = (Id — Projp){f} = Proj,, {f}.

3. Embeddings: S(R?) < My (R?) < Loo —n, (R < S'(RY).

Loo,—no(RY) = {f : RT 5 R st. supgepa(l+ [[o]))7"|f(z)| < oo}
28



Schwartz kernel of pseudo-inverse operator
m Adjoint pair of pseudo-inverse operators
Li, = (Id — Projp)L'R* : S(R x §%71) — S'(RY) (Right-inverse of Ly)

L* = RL="(Id — Projp/) : S(RY) — &'(R x S%* (Left-inverse of L%)
R P R

Theorem (Generalized impulse response of L\;") (Unser FOCM in press)

Let L be an admissible operator with a polynomial null space P = P, (possibly trivial) of degree ny,
a frequency profile Lyaq : R — R, and pyaq(t) = F~2{1/Lyaa }(t). Then,

h(wo, (+,€)) = LE{6( — o) }(t,€)
_ T . - (_ETmO)n n
= Prad (t 5 mo) Z n! (Kjrad * 6 prad) (t)

n=0
with A (o, -) € Co(R x S 1) and

sup (14 [€@o]) 7" A (@o; (- €)) |, m) < 00
(m0,€)ERIXxSI-1

for any ¢ € [2, o0].

29

Kernel of stable right-inverse of “radonized” Laplacian

Continuity bound (non-trivial):

m Integral representation |A§{w}(m)| < |\h(x; ) o lwlim < (14 |lz2]]) [Jw]|m

A;:wb—>f(w):/R/Sdilh(w;t,&)w(t,f)dédt where

T T . Dictionary elements
h(w;¢,€) = %|€ T — ] (Kraa * %‘ D) + (€7 @) (Fraa * %Slgn)(t)’ = extreme po)i/nts of unit ball

where Kpad € Seven(R) is @ normalized radial smoothing kernel.

x = h(z;to, &) 2t h(xost, &)

with &€} o = Const

L I L
-1 0 1

I L
0 1

annQ direction of the ridge; i.e., - s€g (unaer simplifying assumption: k,,q = 6)
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Admissible (activation, operator) pairs

Prad (t) Prad(t) Liad OF Lrag Mo (null space)
Exponential
eIt N/A 14 |w? —1 (trivial)

Classical sigmoids (Barron 1993)

tanh(i) inh .

—> 2 =1+ 1+}r‘ = 7(rm) 0 (bias)
tan(t) w

arc :l’l wel | 0
Ridge splines (of degree n € N)
1[¢| (or ReLU) tlog |t] |w]|? 1 (affine)
o t2" log |t % |w|2ntL 2n > 2 (even)
L x 20+ Tog |¢] |22 2 +1>1 (odd)

Fractional splines
[¢]* sin( <)

[ (a)

(degree o € RT\N)

ign(t)|t|* cos(&E
mip e D o

Table 1: Examples of admissible symmetric and anti-symmetric activa-
tion functions with their corresponding regularization operator. The anti-

m Anti-symmetric extension

Replace symmetric filtering operator K4
by anti-symmetric K,,q = H;2qKaq-

H,.q: Hilbert transform

m Bottom line

Choice of L (resp., Lgr) and symmetry
fixes activation o = p;,q and vice versa

31

M. Unser, T. Blu, “Fractional Splines and Wavelets,” SIAM Review, March 2000.
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CONCLUSION: Return of the spline

= Foundations of functional learning
Functional optimization in Banach spaces (enabled by representer theorems)
Hilbert spaces: the tools of classical ML
Non-reflexive Banach spaces: for sparsity-promoting regularization (e.g., CS)
Isotropy + Radon transform: The key for obtaining pointwise nonlinearities
= Splines and machine learning
Traditional kernel methods are closely related to splines ... and the same holds true for ReLU nets ...

Sparsity-promoting regularization offer promising perspectives

Radon-domain regularization = Unifies Shallow neural nets and RBF methods

= Functional composition = hierarchical splines
Deep ReLU neural nets are high-dimensional piecewise-linear splines

Free-form activations with TV(@-regularization = Deep splines
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